POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name Organic chemistry [S1TCh2>CO2]

Course			
Field of study Chemical Technology		Year/Semester 2/4	
Area of study (specialization) –		Profile of study general academic	
Level of study first-cycle		Course offered in Polish	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 30	Laboratory classe 0		Other 0
Tutorials 30	Projects/seminar 0	S	
Number of credit points 5,00			
Coordinators		Lecturers	
prof. dr hab. inż. Łukasz Chrzanc lukasz.chrzanowski@put.poznan			

Prerequisites

At the beginning of the course, the student should have a basic knowledge of general chemistry. The student should know the symbols of the elements and the principles of chemical bonds cration, and should comprehend and discuss selected issues of inorganic chemistry at ease - catalytic properties of metals, complexes formation. The student should have the ability to associate facts and to obtain information from indicated sources. Moreover, the student should effectively use the knowledge gained during the previous semester.

Course objective

Mastering basic knowledge of the synthesis methods and properties of selected groups of organic compounds - from alkyl halides, through ethers, alcohols, phenols, aldehydes, ketones, carboxylic acids and their derivatives, to amines. The detailed objectives are to familiarize the student with the influence of conditions on the course of competitive reactions, advanced reaction mechanisms (e.g. specific regrouping and condensations) and inter-conversion of functional groups in organic chemistry.

Course-related learning outcomes

Knowledge:

K_W03 has the knowledge of chemistry necessary to understand chemical phenomena and processes $\mathsf{P6S}_\mathsf{WG}$

K_W08 has a structured, theoretically underpinned general knowledge of general and inorganic, organic, physical and analytical chemistry P6S_WG

K_W09 has the necessary knowledge of both natural and synthetic raw materials, products and processes used in chemical technology, and the directions in chemical industry development (in the country and worldwide) P6S_WG P6SI_WG

Skills:

K_U01 is able to obtain the necessary information from literature, databases and other sources related to chemical sciences, to properly interpret them, draw conclusions, formulate and justify opinions P6S_UW

K_U24 predicts the reactivity of chemical compounds based on their structure, estimates the thermodynamic and kinetic effects of chemical processes P6S_UW

K_U20 uses basic laboratory techniques for the synthesis, secretion and purification of chemicals P6S_UW P6SI_UW

Social competences:

K_K06 can think and act in an entrepreneurial way P6S_KO

K_K01 understands the need for further education and improvement of professional, personal and social competences P6S_KKK

K_K04 is able to properly define priorities for the implementation of the designated task P6S_KR

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture:

The knowledge acquired during the lecture is verified by an exam at the end of the semester. The exam is two-stage. The first part consists of 30 test questions in the Moodle system. Passing the test requires a total of >50% of points. Part two, depending on the pandemic situation:

An oral exam in which the student is asked 4 questions from the scope of the lectures, or a computer-

based exam in which the student is asked 4 questions from the scope of the lectures.

Passing this step requires a total of >50% of points.

Exercises:

Test of knowledge presented during the lectures and extended with additional examples during the seminar classes. Passing the exercises requires a total of >50% points.

Programme content

Synthesis methods and reactions characteristic for alkyl halides,

alcohols and phenols, ethers and epoxides, carboxylic acids and their derivatives, aldehydes, ketones and amines are discussed.

Course topics

The following issues are discussed: synthesis methods and reactions characteristic for alkyl halides, alcohols and phenols, ethers and epoxides, carboxylic acids and their derivatives, aldehydes, ketones and amines. Particular emphasis on nucleophilic substitution and elimination reactions, condensation and regrouping reactions, stereo- and regioselective reaction effects and the influence of conditions on the structure of the main product.

Teaching methods

Lecture with a multimedia presentation, discussion with students. Seminar exercises with practical examination of the ability to write chemical reactions and bind individual reactions into organic synthesis schemes.

Bibliography

Basic:

1. Robert Morrison, Robert Boyd, Chemia organiczna, Wydawnictwo Naukowe PWN

2. John McMurry, Chemia organiczna, Wydawnictwo Naukowe PWN

Additional:

- Arthur Vogel, Preparatyka organiczna, Wydawnictwo Naukowe PWN
 Susan McMurry, Chemia organiczna, Wydawnictwo Naukowe PWN
- 3. Jerry March, Chemia organiczna. Reakcje, mechanimy, budowa. Wydawnictwa Naukowo-Techniczne

4. Ray Brewster, William McEwen. Podstawy chemii organicznej. Wydawnictwo Naukowe PWN

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	5,00
Classes requiring direct contact with the teacher	64	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	61	2,50